fc2ブログ

慶應義塾中等部 算数 問題 解説&入試分析★2020年(R2年)

2020.04.22 18:22|入試問題分析(算数)
今回は慶應義塾中等部を扱います。

今年度は難しい問題も混ざっていたので、時間配分や、どのあたりで切り上げて次の問題にいくか立ち回りが難しそうだと思いました。

【問題分析】
大問1…(1)(2)は王道な計算問題、こういうのはあわせないといけない。(3)循環小数ですが、周期は6桁という少し長めなのが慶應中等部らしいです。(4)よくある場合の数です、瞬殺したい。

大問2…(1)基本的な通過算、瞬殺したい。(2)約数全部足す公式は使う学校そこそこあるので、覚えていてもよいと思います。(3)基本的な旅人算、瞬殺したい。(4)比の問題です、読み間違えないよう瞬殺したい。

大問3…(1)ベンツ切り(チェバの定理)の典型問題なので瞬殺できるように仕上げていきましょう。(2)基本的な平面図形の問題が流れている中、やったことないと時間内に解くのは厳しい問題が突然出ています。ツルを折るときのように折る問題です。知らなかったら飛ばす高い決断能力を求められています。(3)典型的な図形問題ですね。(4)難しそうに見えて意外と簡単です。3.14は最後にかけるようにすることを求められているだけです。
大問4…水の体積の問題。底面積は(高さ)÷(時間)の逆比になるやら典型的な解法だけですが、確実に早く合わせないといけないのでよく練習しておきましょう。

大問5…群数列の問題ですが、これはどうなのかって言うぐらい丸まま高校数学の問題です。(1)まず何群目に入るか、その次にその中で何番目か。(2)300は何群目の何番目か、群ごとに和をだして、それを足しあげる。解法をしっかり身につけておきましょう。

大問6…計算も処理も簡単ですが、特に(2)は問題文を読み取り、どう処理をしていいかの判断が難しめです。(1)は見えていないところを全部白にするか黒にするかぐらいではあります。(2)はつるかめ算で白と黒の個数をだして、表面に黒をおくときは場所に何面出てくるか違うことを読み取らないといけません。

大問7…今回はこの問題を扱います。


(問題)慶應義塾中等部 大問7
1個180円のシュークリームと、1個220円のプリンがあります。シュークリーム5個のセットだと800円で買え、プリン6個のセットだと1200円で買えます。さらに、シュークリームとプリン2個ずつのセットだと650円で買うことができます。例えば、シュークリームを5個買う場合、シュークリーム5個のセットで800円で買うこともできますし、1個180円のシュークリームを5個で900円で買うことも出来ます。次の[   ]に適当な数を入れなさい。
(1)5000円以内でプリンを少なくとも5個買うとき、シュークリームは最大[   ]個買えます。

(2)シュークリームとプリン合わせて50個買って、代金がちょうど10000円になるような買い方を考えます。この条件の下で、プリンをできるだけ多く買いたい太郎君は、プリンを[ア]個買いました。また、同じ条件の下で、シュークリームをできるだけ多く買いたい二郎君は、シュークリームを[イ]個買いました。


[解答]
(1)この大問の難しさは、どういう考え方の枠組みを作ったら良いかです。

それではまず条件を整理して、それぞれの買い方が1個当たり何円になっているかを見ていくと

まず単体では
シュークリーム単体1個180円
プリン単体1個220円
シュークリーム5個セットは1個当たり800÷5=160円
プリン6個セットは1個当たり1200÷6=200円
シュークリームとプリン2個ずつのセットは1個あたり650÷4=162.5円、ただしプリンまたはシュークリームを1個欲しかったと考えると650÷2=325円

どう組み合わせればよいか、これ以上は考えてもややこしくて頭痛くなりそうですが、
プリンを出来るだけ少なく5個以上買わないといけないことは確かです。
なのでプリンを出来るだけ少なく5個以上買う方法で場合分けしてみます。

○プリン単体で5個買う
○プリン6個セットを買う
○シュークリームとプリン2個ずつのセットを3セット買う
○シュークリームとプリン2個ずつのセットを2セットとプリン単体1個買う
○シュークリームとプリン2個ずつのセットを1セットとプリン単体3個買う
の5つの場合に分けることができます。

○プリン単体で5個買ったとき
残りの金額は5000-220×5=3900円
買えるシュークリームの個数はまずは1個当たりの安いシュークリーム5個セットを出来るだけ買って
3900÷800=4余り700
残り700円は単体で買えばよくて700÷180=3余り160円
よってシュークリームは5×4+3=23個買えます。

○プリン6個セットを買ったとき
残りの金額は5000-1200=3800円
同様にして
3800÷800=4余り600
600÷180=3余り40円
よってシュークリームは23個。

○シュークリームとプリン2個ずつのセットを3セット買ったとき
残りの金額は5000-650×3=3050円
同様にして
3050÷800=3余り650
650÷180=3余り110
よってシュークリームは2×3+5×3+3=24個

○シュークリームとプリン2個ずつのセットを2セットとプリン単体1個買う
残りの金額は5000-650×2=3700円
プリン単体1個を買って残りの金額は3700-220=3480円
同様にして
3480÷800=4余り280
280÷180=1余り100
より買えたシュークリームの個数は
4+5×4+1=25個

○シュークリームとプリン2個ずつのセットを1セットとプリン単体3個買う
残りの金額は5000-650=4350円
プリン単体3個を買って残りの金額は4350-220×3=3690円
同様にして
3690÷800=4余り490
490÷180=2余り130
より買えたシュークリームの個数は
2+5×4+2=24個

以上よりシュークリームは最大25個とわかりました。

(2)
[ア]
どう考えていくか難しいところですが
合計10000円だけでなく合計50個という条件もついています。
ちょうど10000円になるようにプリンを出来るだけ買うことを考えてもなかなか難しいです。
そこで関西の塾でよくやる、つるかめ算
プリン50個買ってみて1個ずつ減らして値段がどう変わっていくか規則性を考えてみます。

○プリン50個買うと
プリンはシュークリームとプリン2個ずつのセットは使えないので単体220円,6個セットで1個当たり200円なので基本的に200円以上になります。
できるだけ安く買うと50÷6=8あまり2より
(プリン6個セット)×8+(プリン単体)×2=10040円

○プリン49個買うと
出来るだけ安く買うには
(プリン6個セット)×8+(プリン単体)×1+(シュークリーム単体)×1=10000円
とちょうど10000円になりました。

よってプリンを出来るだけ多く買うと49個とわかりました。


[イ]同じようにしてシュークリーム50個買ってみて1個ずつ減らして値段がどう変わっていくか規則性を考えてみます、

○シュークリームを50個出来るだけ高く買ってもシュークリーム単体で50個買って
180×50=9000円より1000円届かなくなります。
○シュークリーム49個買うと出来るだけ高くしても180×49+220×1=9040円
○シュークリーム48個買うと出来るだけ高くしても180×48+220×2=9080円
○シュークリーム47個買うと出来るだけ高くしても180×47+220×3=9120円


40円ずつ高くなるので10000円になるには1000÷40=25
よりシュークリーム50-25=25個の時に10000円になります。

これが26個以上であれば10000円に届かないので出来るだけ多くシュークリームを買うと25個とわかりました。


この問題はどう考えていけばいいか難しいですが、1個当たりの値段や、つるかめ算でやるような表を書いて規則性を考えたりなど使うことは典型の手法になります。まずはしっかり典型を解けるようにしておきましょう。(畠田)
←数理教育研究会へのHPはこちら
※お電話・お問い合わせフォームでのご連絡、お待ちしております。
    

六甲中学校 入試分析 算数 (A日程) 2020(R2)

2020.04.20 14:45|入試問題分析(算数)
今回は六甲学院中学A日程を扱います。


【問題分析】
大問1…王道な計算問題です。確実にあわせましょう。

大問2…完全順列のちょっとした応用問題です。Aだけ同じ場合をやれば5倍すれば良いので完全順列をやったことなくても出来てほしいところです。

大問3…かなりの典型問題の展開図の問題です。解き方を覚えて解けるようにしてください。

大問4…かなりの典型問題の約数の問題です。これも解き方を覚えて解けるようにしておくのが基本です。

大問5…かなりの典型問題の比の問題です。人口密度の比は(人口の比)÷(面積)の比になります。

大問6…消去算になり苦手な人も多いですが,出来るようにしておけば点数とりやすいのでしっかり勉強しておいてほしいです。

大問7…算数的な構造としては不定方程式のような問題です。(1)(2)については計算というよりは、論証を求められています。今回はこの(3)を扱います。

大問8…よくある3つ点が円を回る問題です。同じような問題はやったことあると思うので、しっかり解けるようにしておきたいです。

大問9…見たことないような問題になります。しかし挑戦のなす角度は直線を平行移動しても変わらないので台車が一直線上にあるとすると、光線がなす角度は
(前の台車の回転した角度)-(後ろの台車の回転した角度)
になるのでそんなに難しいわけではないです。


(問題)六甲学院中学 A日程 大問7(3)
2つの砂時計A,Bがあり,砂時計Aは5分,Bは7分を計ることができます。これらの砂時計を使って時間を計ろうと思います。砂時計は初め砂が落ちきった状態にあり,砂時計をひっくり返したときから時間を計るものとします。ただし,砂が落ちている途中に砂時計をひっくり返すことはできますが,横にして砂を止めることはできません。また,ひっくり返すときにかかる時間は考えないものとします。
(3)6分,8分,11分,13分,16分の中で計ることのできない時間はどれですか。答えのみをすべて書きなさい。


[解説]
省略した(2)から
5+(7-5)+(7-5)=9
というように5分の砂時計Aを使えばその後は2ずつ増やすことができます。

計れる一番小さい奇数の時間は5分なので
5,7,9,11,…
というように5以上の奇数はすべて計ることができます。


一番小さい偶数は5分の砂時計Aを2回使った10分となります。
よって
10,12,14,16,…
というように10以上の偶数はすべて計ることができます。

したがって6分,8分,11分,13分,16分のうち計ることができないのは
6分と8分
ということがわかりました。


初見の問題に見えても根幹にあるものは典型的な解法の考え方である場合があります。普段から典型問題の練習と使えないか練習をしておきましょう(畠田)

テーマ:中学受験
ジャンル:学校・教育

←数理教育研究会へのHPはこちら
※お電話・お問い合わせフォームでのご連絡、お待ちしております。
    

浦和明の星女子中学校 算数 問題解説&入試分析★2020年(R2年)

2020.04.16 16:55|入試問題分析(算数)
今回は浦和明の星中学第1回を扱います。

【入試資料分析】
受験者数2053人
合格者数1061人
実質倍率1.9

平均点は
受験者全体 合格者全体の順に
国語74.7 79
算数56.6 68
理科30.9 35
社会37.6 40.2
合計199.7 222.3

算数はここ数年では少し低めでした。
受験者全体と合格者全体の平均点の差をみると、算数はかなり差がつきやすい科目となっています。

【問題分析】
大問1…(1)計算問題です、必ずあわせましょう。(2)仕事算の基本的な問題です。(3)2つの斜線部の面積が等しいということは,直角三角形とおうぎ形の面積も等しいという、よくあるパターンなのでしっかり正解したい。(4)丁寧に数えて規則性を見つける問題です、正解したい。(5)年齢算、少し応用的ですが正解したい。(6)状況を把握するのが少し難しかったかもしれません。上からと下からと横からを全部あわせて、左右上下を考えましょう。(7)表の読解力が必要ですが、正解したい。(8)少し複雑な食塩水の濃度の問題ですが、あわせておきたいところです。

大問2…(1)旅人算。時間を計算するとそんなに複雑でもないので正解したいところです。(2)そんなに複雑というわけでもないですが、ミスをしないようにきっちり見直しを。

大問3…比の問題です。箱アと箱イはみかんの合計数同じなので比の和が同じようになるようにします。よく練習しておいて確実にあわせたい。

大問4…(1)(2)くらいまでは正解できたらよいと思います。よく見るような問題かもしれませんが、ミスなく数えるのは難しいかもしれません。

大問5…今回はこれを扱います。


(問題)R2 浦和明の星中学 大問5
下の図のように、青い電球と赤い電球をそれぞれ19個ずつ並べ,左から順に0番から18番まで番号をつけました。
青い電球は7秒間隔で,赤い電球は13秒間隔で,次のように一つずつ一瞬だけ発光します。どちらの色の電球も,0,1,2,…,16,17,18,17,16,…2,1,0,1,2,…というように,0番から18番までは番号の小さい順に,18番から0番までは番号の大きい順に発光していくことを繰り返します。
はじめに,0番の青と赤の電球が同時に発光し,その後次々と発光していきました。次の問いに答えなさい。
urawaake20m1.jpg

(1)青と赤の電球が,0番で同時に発光した後,次に同時に発光するのは何番の電球ですか。青と赤の電球の番号をそれぞれ答えなさい。

(2)青と赤の電球が,0番で同時に発光した後,次に同じ番号のところで同時に発光する電球の番号を答えなさい。

(3)同じ番号のところで同時に発光する青と赤の電球が,0番と(2)の答え以外にもあります。その電球の番号を,0番と(2)の答えを除いてすべて答えなさい。


[解説]
(1)7と13は互いの素です。
なので7×13=91秒後に同時に光ることになります。
ということは
青い電球は91÷7=13番目
赤い電球は91÷13=7番目
とわかります。

(2)まず(1)がヒントになってることを疑うのが一番最初にやることがです。
91秒の倍数であるはずで青い電球は13個ずつ進み,赤い電球は7個ずつ進みます。

しかも0と18は1回ついて折り返しで往復しているとなると速さの問題に似ています。

速さの問題では出会いと追いつきを考えました。

urawaakenohosi_2020_kaisetu_m5-1.jpg
urawaakenohosi_2020_kaisetu_m5-2.jpg
出会いでは二つの電球が進んだ個数の和が18×2=36個の整数倍
追い抜きでは二つの電球が進んだ個数の差が18×2=36個の整数倍

となります。

○出会いの時
(13+7)×A=36×B
これを整理して
5×A=9×B
より一番小さいAは9とわかります。

この時,赤い電球は7×9=63進むので

63=36×2+18+9
より番号9とわかります。

○追いつきの時
(13-7)×A=36×B
これを整理して
A=6×B
より一番小さいAは6とわかります。

この時,赤い電球は7×6=42進むので

42=36+6

より番号6です。

ということは番号9より番号6の方が小さいので番号6とわかります。


(3)(2)より
○出会いの時
出会いの電球の番号は9ずつ増えるので
0,9,18,9,0,…

○追いつきの時
追いつきの電球の番号は6ずつ増えるので
0,6,12,18,12,6,0,…

以上より番号は9,12,18とわかりました。


前の問がヒントになってないか?考える,色々と試してみて問題を掴んでみる,似たような問題の解法が使えないか?考える。これらのアプローチを練習していけば合格に近づきます!(畠田)

テーマ:中学受験
ジャンル:学校・教育

←数理教育研究会へのHPはこちら
※お電話・お問い合わせフォームでのご連絡、お待ちしております。
    

神戸海星女子学院中学校(A日程) 2020(R2)入試分析 算数 

2020.04.11 19:07|入試問題分析(算数)
今回は神戸海星女子学院中学 A日程を扱います

【入試資料分析】
受験者数144人
合格者平均240.0
合格最低点204/360
合格者数97人
実質倍率1.48

ここ数年は平均点が高いので基礎的な間違えてはいけない問題を落とさないようにするタイプの試験になっています。


【問題分析】
大問1…一通りの分野の本当に基本的な例題という問題を集めた小問集合です。ここは落とせません。

大問2…消去算の問題です。やり方は単純なので計算ミスのないようにしたいです。

大問3…(1)(2)かなり典型的な図形の日の問題です。(3)三角形の底辺と高さの比で面積の比が求まりますが(1)(2)が誘導になっているので確実にとりたいです。

大問4…今回はこれを扱います。

大問5…流水算の問題です。一通りの基本的な例題をマスターしておけば解けるので点数をとりたい。

大問6…立方体のブロックがたくさんある問題です。よく練習させられているのでこれもとりたいところです。

(問題)R2 神戸海星女子学院中学 大問4
赤,青,黄の3つのさいころを同時に投げます。次の問いに答えなさい。

(1)赤の目より青の目が大きく,青の目より黄の目が大きくて,3つの目の和が12になるような,赤,青,黄の目の組をすべて書きなさい。例えば,赤の目が1,青の目が2,黄の目が3のときは,(1,2,3)と書きなさい。

(2)3つのさいころの目の積が30となるような目の組はいくつありますか。

(3)赤と青のさいころの目の積が黄のさいころの目よりも小さくなるような目の組はいくつありますか。


[解説]
(1)小<中<大となる1~6からの数字3つを選べば赤、青、黄の目と対応します。
(1,5,6)
(2,4,6)
(3,4,5)

の3つとなります。

(2)
30=2×3×5です。
5の目は必ず1つ出ます。
後は6が出る場合と出ない場合です。

3つの数字の組み合わせを考えてから,赤,青,黄と並べる方法を考えます。

6が出る場合は3つの数字の組は
(6,5,1)
この並べ方は3×2×1=6通り

6が出ない場合は3つの数字の組は
(2,3,5)
この並べ方も3×2×1=6通り

よって6+6=12通りとわかりました。

(3)
赤と青のさいころの目が異なる場合と同じ場合で分けてみます。

赤と青のさいころの目が異なる場合
目の積が5になるとき数字の組合わせは(1,5)で黄色の目は6の1つ
目の積が4になるとき数字の組合わせは(1,4)で黄色の目は6,5の2つ
目の積が3になるとき数字の組合わせは(1,3)で黄色の目は6,5,4の3つ
目の積が2になるとき数字の組合わせは(1,2)で黄色の目は6,5,4,3の4つ
そして赤と青を並べると2通りずつになります。
よって
(1+2+3+4)×2=20通り

赤と青のさいころの目が同じ場合
赤と青のさいころの目が1の時、積は1で黄色は2,3,4,5,6の5通り
赤と青のさいころの目が2の時、積は4で黄色は5,6の2通り
よって5+2=7通り

したがって
20+7=27通り
とわかりました。


この問題は整理や処理の仕方がポイントになります。数え上げていく確かな基礎的な練習が合格に近づきます!(畠田)

テーマ:中学受験
ジャンル:学校・教育

←数理教育研究会へのHPはこちら
※お電話・お問い合わせフォームでのご連絡、お待ちしております。
    

フェリス女学院中学校 算数 問題 解説&入試分析★2020年(R2年)

2020.04.10 16:25|入試問題分析(算数)
今回はフェリス女学院中学の算数を扱います

【入試資料分析】
2020年度の受験者数は384人で合格者195人、倍率は1.97倍です。

平均点は
国語:70/100
算数:54/100
社会:41/60
理科:42/60


【問題分析】
大問1…(1)王道な計算問題です、絶対あわせましょう。(2)角度を調べると二等辺三角形を発見できる、基本的な良い問題です。(3)1,2,3,4,5,6,7,8,9,10がそれぞれ何回あらわれて,それは2が何個分か?3が何個分か?5が何個分か?7が何個分か?を考えます。勉強にするにもよい問題です。(4)典型的な比の問題です、必ずあわせたい。(5)例1ではお尻同士がくっついてる場所が一カ所、または全部同じ向き。例2では頭が向き合っている箇所の左側と右側が例1のようになっています。色々書いて規則性を把握しまししょう。

大問3…(1)は扇形から直角二等辺三角形を取り除くだけです。(2)30°を利用して三角形の高さを求めて三角形の面積をひくのがポイントになります。どちらも基礎的なのであわせたい。

大問4…完全にa_(n+1)=2/3×a_n+10を解くという高校の漸化式の問題です。(1)計算してみて操作を理解しましょう。(2)特性方程式x=2/3×x+10を解いてx=30と求めて差を考えるのが高校の解き方ですが、それを誘導でやってくれています。
30-(n+1番目の数)={30-(n番目の数)}×2/3
となっています。(3)30-10=20を何回2/3倍すれば30-29=1より小さくなるか考えます。高校の範囲と言えども誘導がしっかりついてるので点数はとりたいところです。

大問5…今回はこれを扱います。


(問題)R2 フェリス女学院中学校 大問2(1)
Aさん,Bさん,Cさん,Xさんの所持金はそれぞれ1600円,3000円,4000円,x円です。AさんとXさんの所持金の差はa円,BさんとXさんの所持金の差はb円,CさんとXさんの所持金の差はc円です。a,b,cはすべて異なる数です。次の問いに答えなさい。(1),(2)は下のわくの中から選んで答えなさい。
ferisu20m1.jpg
(1)a,b,cの大小関係についてありえないものを,上のわくの中の①~⑥からすべて選び,その番号を答えなさい。

(2)bとcの和がaの2倍に等しいとき,a,b,cの大小関係として考えられるものを,上のわくの中の①~⑥からすべて選び,その番号を答えなさい。

(3)bとcの和がaの2倍に等しいとき,Xさんの所持金x円はいくらですか。



[解説]
(1)大小関係がどこで切り替わるか数直線で考えてみます。
ferisu_2020_kaisetu_m5-1-1.jpg
図はxの位置によってa,b,cの大小関係がどうなるかを表していて、aとbはAとBの中点,bとcはBとCの中点,cとaはCとAの中点を境に大小関係がかわります。
この図から
のa<cとc<bは同時に成立しなくて
のc<aとa<bは同時に成立しないことがわかります。

(2)式で考えると楽です。(1)より②と⑤以外となります。
①a<b<cであればb+c>a+aなのでb+cはaの2倍より大きいです。
④b<c<aであればb+c<a+aなのでb+cはaの2倍より小さい
⑥c<b<aであればb+c<a+aなのでb+cはaの2倍より小さい

のでのb<a<cしかないことがわかります。

(3)
ferisu_2020_kaisetu_m5-1-2.jpg
b<a<cなのでxは図の赤い部分の値よりxは1600より大きく,3000と4000より小さいので
a=x-1600
b=3000-x
c=4000-x
より(x-1600)×2=3000-x+4000-x
整理してx×4=10200からx=10200÷4=2550
とわかりました。


これは高校でやるような絶対値の問題ではあります。綺麗に解けなかったとしても,色々な場合を具体的に考えてみてみましょう。(畠田)

テーマ:中学受験
ジャンル:学校・教育

←数理教育研究会へのHPはこちら
※お電話・お問い合わせフォームでのご連絡、お待ちしております。
    
| 2024.04 |
- 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 - - - -
ご案内


数理教育研究会のHPはこちら↑
※お電話・お問い合わせフォームでのご連絡、お待ちしております。

プロフィール

エデュパスタッフ

Author:エデュパスタッフ
FC2ブログへようこそ!

最新記事

最新コメント

カテゴリ

月別アーカイブ

検索フォーム

リンク

QRコード

QR

ページトップへ