FC2ブログ

早稲田実業学校中等部 算数 問題解説&入試分析★2020年(R2年)

2020.05.30 18:16|入試問題分析(算数)
今回は早稲田実業学校中等部の算数を扱います。

【入試資料分析】
受験者数
男子359
女子222

合格者数
男子102
女子55

実質倍率
男子3.52
女子4.04

合格最低点
男子194点
女子214点

各科目の受験者平均は
国語63.0/100
算数57.6/100
社会27.4/50
理科28.0/50

女子の難易度が高い

【問題分析】
大問1…(1)適度な計算問題です。必ずあわせたい。
(2)定石の比の問題。素早くあわせたい。
(3)定石の道のりの場合の数の問題。イチイチ解法などで素早くあわせたい。
(4)色々な求め方あると思いますが、例えば断頭三角柱ととらえて平均の高さを求めて体積を出せます。しかし面倒な方法になったとしても、これはあわせたい。

大問2…(1)今回はこの問題を扱います。
(2)群数列の問題です。典型でそんなに複雑でもないので満点を狙いたい。

大問3…(1)歩数と歩幅の典型問題です。すぐにあわせたい(2)ダイアグラムを見ると太郎と花子の速さの比は2:1とわかります。よって3人の速さの比がわかります。そうすると、それぞれの出会いにおいて速さの和の比を考えることが出来るので道のりはABで同じことから時間の比は速さの和の比の逆比になります。すると太郎君の進んだ距離は時間の比になります。(3)(2)よりAC,CD,DBの長さがそれぞれ求まります。と言うことは太郎君の速さが求まるので次郎君の速さも求まります。少し高度ではありますが、旅人算の定石で解けるのであわせていきたい。

大問4…(1)仕事算の典型問題です。(2)典型的な食塩水の濃度の問題です。(3)容積に関する式と濃度に関する式を二つ立てて消去算の構造になります。計算が大変です。


大問5…円の半径から直角三角形の長さがわかっていきます。そして合同や相似な直角三角形を見つけていくことができます。3:4:5の直角三角形とわかっていきます。
直角三角形の直角でない角度を○と×とでも書いて同じ角度のところに印を入れていくなどの整理の仕方を練習しているかが効いてきます。ややこしいですが、(1),(2)くらいまであわせられたらなと思います。


(問題)早稲田実業学校中等部 大問2の(1)
下の図は、文字盤のない時計を長針が真上にくるようにおいたものです。このとき,(あ)と(え)の角の大きさの比は1:2,(い)と(う)の角の大きさの比は3:1となりました。次の①,②に答えなさい。

①(う)の角度を求めなさい。

②この時計は何時何分を表していますか。
soujitu20m1.jpg


[解説]
①(あ)+(い)=60°,(う)+(え)=30°
です
(あ)と(え)の角の大きさの比は1:2より(あ)=[1],(え)=[2]
(い)と(う)の角の大きさの比は3:1より(い)=<3>,(う)=<1>
とおけます。

すると
[1]+<3>=60°
[2]+<1>=30°

消去算より
(上の式)×2-(下の式):
<5>=90°
から
<1>=18°
[1]=6°
とわかりました。

時計算なので6:0.5:5.5を使うと見せかけて、まだ使わないので騙されないように条件を整理しましょう。


(2)(う)は長針が0分をさしているとき0°です。
長針が1分すすむと0.5°進みます。

これらのことから長針は
18÷0.5=36分
をさしています。

と言うことは36分戻すには長針を反時計回りに8個目のメモリに戻せばよくなります。

この時、長針から見て針は反時計回りに90°なのでこの時間は9時とわかります。

よって9時36分


早稲田実業はどの大問も定石の解法はよく問われますが、小問によっては複雑になりがちです。
しっかり抑えるところは抑えて、複雑な問題はいくつか正解しておけばアドバンテージになります。がんばってください(畠田)
スポンサーサイト



テーマ:中学受験
ジャンル:学校・教育

←数理教育研究会へのHPはこちら
※お電話・お問い合わせフォームでのご連絡、お待ちしております。
    
| 2020.05 |
- - - - - 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 - - - - - -
ご案内


数理教育研究会のHPはこちら↑
※お電話・お問い合わせフォームでのご連絡、お待ちしております。

プロフィール

エデュパスタッフ

Author:エデュパスタッフ
FC2ブログへようこそ!

最新記事

最新コメント

カテゴリ

月別アーカイブ

検索フォーム

リンク

QRコード

QR

ページトップへ