スポンサーサイト

--.--.-- --:--|スポンサー広告
上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
数理教育研究会へのHPはこちら
※お電話・お問い合わせフォームでのご連絡、お待ちしております。

整数の2乗の和

2012.06.27 14:50|マメ知識集
さらに「整数の2乗の和」の続きを。

2jouwa1.jpg

例えば,上図のように三角形の形で1から4までの整数を並べたときに,
このすべての整数の和が,
1×1+2×2+3×3+4×4
になるのはわかると思います。
次にこの三角形を120°ずつ回転させていったものを3つ作り,
3つの三角形の同じ位置に書かれた数字を足していくと,
その和はすべて9(=4+1)になります。
つまり,全部で9が
10個(=(1+44×1/2(等差数列の和))
できるので,その和は
9×10=90
となります。
よって,元の三角形に並べられた整数の和は,この1/3倍,つまり
30
となります。

同様に1からNまでの整数を同じように並べた場合,その和は
1/6×N×(N+1)×(2×N+1)(上の太字部分の「4」を「N」に置きかえて,すべてかけて整理したもの)
となります。
(高校数学で数列を習った方にはおなじみの公式ですね)

ちなみに上の公式は,
下図のような立体を組み立てることからも考えることができます。
(組み立てた後,若干の変形が必要ですが)
一度考えてみてくださいね。
(宇)
2jouwa2.jpg
スポンサーサイト
数理教育研究会へのHPはこちら
※お電話・お問い合わせフォームでのご連絡、お待ちしております。

Comment

非公開コメント

| 2017.10 |
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 - - - -
ご案内


数理教育研究会のHPはこちら↑
※お電話・お問い合わせフォームでのご連絡、お待ちしております。

プロフィール

エデュパスタッフ

Author:エデュパスタッフ
FC2ブログへようこそ!

最新記事

最新コメント

カテゴリ

月別アーカイブ

検索フォーム

リンク

QRコード

QR

ページトップへ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。