2017(H29)入試分析 算数 関西学院中等部 第1日
2017.03.21 14:26|入試問題分析(算数)|
関西シリーズもいよいよあと2回。今回は関西学院中学部(第一日)の問題を取り上げます。
入試関連数値の推移は,
■倍率
男2.1倍⇒1.7倍⇒1.6倍⇒1.6倍⇒1.8倍
女1.8倍⇒1.9倍⇒1.9倍⇒2.0倍⇒1.7倍
■合格最低点
男315点⇒322点⇒298点⇒290点⇒313点
女317点⇒337点⇒323点⇒332点⇒314点
■算数平均点
男114点(60点,55点)⇒124点(61点,63点)⇒106点(53点,53点)⇒109点(59点,51点)⇒115点(59点,56点)
女111点(58点,53点)⇒122点(61点,60点)⇒107点(53点,54点)⇒108点(57点,51点)⇒119点(61点,58点)
高槻共学化の影響か,男女の倍率が逆転しましたね(^^;
各問寸評
大問1 計算問題。(1)~(4)まで,普通の計算です。全問取りましょう。
大問2 (1)倍数算(2)面積(3)濃度(4)過不足算は全問取らないといけません。
(4)は苦手とする人もいるのでしょうが,定番なので必ずできるようにしておきたいですね。
(5)は規則性の文章題で難易度はそれほど高くないのですが,計算ミスなどが出るのかな…
大問3 場合の数(点移動)。定番の問題なので,できてほしいところ。
大問4 影の問題。これも定番ですが,図が描けない→解けない という人が多い問題です。
大問5 水入れ問題(グラフ付き)。今回はこれを扱います。
大問6 (1)は必須。(2)まで取れればおつりが来ます。(3)はできなくてもOK。
「2回目に出会う」に追い越しは含めるのかで解答が分かれそうですね。
ちなみに私は含めないと判断しましたが,含めると判断する算数の先生もいました。
(問題)H29 関西学院中学部・算数(第1日) 大問5番
図のような2つの直方体を重ねた水槽があり,左右の側面に平行な長方形のしきりで,底面が2つの部分に
分けられています。この水槽に蛇口から毎分0.6Lの水を入れます。グラフは,空の水槽に水を入れ始めてから
いっぱいになる14分までの時間と,(ア)の部分の水面の高さの関係を表したものです。グラフの①にあてはまる
数を求めなさい。

水入れ問題ですから,まずは正面から見た図を描きましょう。
奥行きが一定ですから,体積ではなく,面積で計算するほうが数が小さくて楽ですね。
毎分0.6L=毎分600cm^3は正面からの面積に直すと600÷10=60cm^2/分です。
ここに分かっている長さやかかった時間を書き込んでいきましょう。

まずはここまで書き込むことができます。長方形の面積がわかっていて,縦横の一方がわかっていれば,
他方を求めることができますね。

24cmと21cmから,㋐の長方形の縦の長さが3cmと求まり,そこから芋づる式に㋐の面積⇒㋑の面積がわかります。

つまり,㋑の長方形の縦の長さが126÷(10+18+14)=3cmなので,全体の深さは24+3=27cmとなります。
ラ・サール中学校のところでも書きましたが,水入れの問題は色々な道筋が出てきます。
今回も段のところに注目したり,横幅の比に注目したりと色々な解き方が考えられますが,
まずは前からの図を描き,縦×横=面積になっているということを当たり前に使えるようにしておきましょう。(池)
入試関連数値の推移は,
■倍率
男2.1倍⇒1.7倍⇒1.6倍⇒1.6倍⇒1.8倍
女1.8倍⇒1.9倍⇒1.9倍⇒2.0倍⇒1.7倍
■合格最低点
男315点⇒322点⇒298点⇒290点⇒313点
女317点⇒337点⇒323点⇒332点⇒314点
■算数平均点
男114点(60点,55点)⇒124点(61点,63点)⇒106点(53点,53点)⇒109点(59点,51点)⇒115点(59点,56点)
女111点(58点,53点)⇒122点(61点,60点)⇒107点(53点,54点)⇒108点(57点,51点)⇒119点(61点,58点)
高槻共学化の影響か,男女の倍率が逆転しましたね(^^;
各問寸評
大問1 計算問題。(1)~(4)まで,普通の計算です。全問取りましょう。
大問2 (1)倍数算(2)面積(3)濃度(4)過不足算は全問取らないといけません。
(4)は苦手とする人もいるのでしょうが,定番なので必ずできるようにしておきたいですね。
(5)は規則性の文章題で難易度はそれほど高くないのですが,計算ミスなどが出るのかな…
大問3 場合の数(点移動)。定番の問題なので,できてほしいところ。
大問4 影の問題。これも定番ですが,図が描けない→解けない という人が多い問題です。
大問5 水入れ問題(グラフ付き)。今回はこれを扱います。
大問6 (1)は必須。(2)まで取れればおつりが来ます。(3)はできなくてもOK。
「2回目に出会う」に追い越しは含めるのかで解答が分かれそうですね。
ちなみに私は含めないと判断しましたが,含めると判断する算数の先生もいました。
(問題)H29 関西学院中学部・算数(第1日) 大問5番
図のような2つの直方体を重ねた水槽があり,左右の側面に平行な長方形のしきりで,底面が2つの部分に
分けられています。この水槽に蛇口から毎分0.6Lの水を入れます。グラフは,空の水槽に水を入れ始めてから
いっぱいになる14分までの時間と,(ア)の部分の水面の高さの関係を表したものです。グラフの①にあてはまる
数を求めなさい。

水入れ問題ですから,まずは正面から見た図を描きましょう。
奥行きが一定ですから,体積ではなく,面積で計算するほうが数が小さくて楽ですね。
毎分0.6L=毎分600cm^3は正面からの面積に直すと600÷10=60cm^2/分です。
ここに分かっている長さやかかった時間を書き込んでいきましょう。

まずはここまで書き込むことができます。長方形の面積がわかっていて,縦横の一方がわかっていれば,
他方を求めることができますね。

24cmと21cmから,㋐の長方形の縦の長さが3cmと求まり,そこから芋づる式に㋐の面積⇒㋑の面積がわかります。

つまり,㋑の長方形の縦の長さが126÷(10+18+14)=3cmなので,全体の深さは24+3=27cmとなります。
ラ・サール中学校のところでも書きましたが,水入れの問題は色々な道筋が出てきます。
今回も段のところに注目したり,横幅の比に注目したりと色々な解き方が考えられますが,
まずは前からの図を描き,縦×横=面積になっているということを当たり前に使えるようにしておきましょう。(池)
スポンサーサイト
