FC2ブログ

女子学院中学校 算数 問題 解説&入試分析★2020年(R2年)

2020.03.12 18:02|入試問題分析(算数)
今回は女子学院中学の算数をとりあげます。

【入試資料分析】
受験者746名て合格者が274名。実質倍率は2.72倍です。
ここ数年高い倍率が続いています。
合格最低点など非公表ですが7割5分から8割を目指したいところです。


【問題分析】
大問1…(1)計算問題らしい計算問題、必ずあわせましょう。(2)30°を利用する基本的な三角形の面積の問題です。必ずあわせたいです。(3)正三角形になるよくある問題を少し捻った問題ですが正三角形や二等辺三角形になる場所をさがすという同じことをやればいいので落ち着いてとりたいところです、(4)計算は簡単ですが文章が少しややしくて読解力が必要なのが女子学院らしいので解いてみてください。(5)最小公倍数の問題です、瞬殺できるように慣れておきたい。(6)直角三角形があると角度に○と×をつけていくことは普段からもやっておいてください。

大問2…直角三角形に正方形が入っておりパターンそのままの問題です。計算間違いなく解いて時間を稼いでください。

大問3…基本的な用語を聞いてきています。2秒で答えてください。

大問4…3→4区間の速さについては述べられていませんが、グラフから計算しろということです。他の区間が全て同じ時間なことに注意してください。このような読解も処理も少し複雑な問題はよく出るので練習しておいてください。

大問5…今回はこれを扱います。

大問6…(1)は流速が打ち消しあい、どちらも同じ時間なので速さは進んだ距離に比例します。(2)はダイアグラムなど書いて間違えないようにきをつけてください。典型的な問題なのでしっかりたくさん練習しておいてください。


(問題)R2 女子学院中学 算数 大問5
下のように,AからPまでに,ある整数が入っている表があります。この表に,次の規則に従って○か×の印をつけます。
① AからPまでの数の1つに○をつけ,その数と同じ行,同じ列に並んでいる印のついていない数すべてに×をつける。
② 印のついていない残りの数の1つに○をつけ,その数と同じ行,同じ列に並んでいる印のついていない数すべてに×をつける。
③ もう一度②を行い,残った数に○をつける。
jyosigaku20m1.jpg
この表では,どこを選んで○をつけていっても,①から③の作業をした後に○のついた数の和がいつでも同じになることがわかりました。

(1)①から③までの作業をした後に○のついた数は全部で[   ]個あり,それらの数の和はいつでも[   ]です。

(2)Aに入っている数は[   ],Gに入ってる数は[   ]です。

(3)この表に入っている一番大きい数は[   ],一番小さい数は[   ]です。



[解説]
(1)4×4なのでこの作業をすると4個○がつきます。
和はいつでも同じということは、和の値が出てくるように○をつけていけばいいです。
josigakuin_2020_m5_kaisetu1.jpg
例えば
8+15+12+9=44

(2)この作業を何度かやってみると,各列から行の違うものを選んだ整数の和のが一定ということがわかります。
ということは例えば
josigakuin_2020_m5_kaisetu2 (1)
A+15+9+11=44からA=9
8+12+G+11=44からG=13

(3)更に整数を求める計算をしていってみると

josigakuin_2020_m5_kaisetu3.jpg
○をつけてから2列を抜き出して、その2列の○のついた整数の和は,それぞれの行を交換して○をつけなおしても整数の和は同じでないといけないことがわかります。

ということは9+11=15+LよりL=5
9+J=8+12よりJ=11
11+15=9+NよりN=17
11+M=8+17よりM=14
E+12=9+15よりE=12
C+15=12+13よりC=10
10+9=13+DよりD=6
と全てわかり一番大きい数は17一番小さい数は5とわかります。


具体的にやってみることがこの問題のアプローチのポイントです。間違いを恐れず、どんどん書いてみて問題を把握していきましょう。(畠田)
スポンサーサイト



テーマ:中学受験
ジャンル:学校・教育

←数理教育研究会へのHPはこちら
※お電話・お問い合わせフォームでのご連絡、お待ちしております。
    

Comment

非公開コメント

| 2021.07 |
- - - - 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
ご案内


数理教育研究会のHPはこちら↑
※お電話・お問い合わせフォームでのご連絡、お待ちしております。

プロフィール

エデュパスタッフ

Author:エデュパスタッフ
FC2ブログへようこそ!

最新記事

最新コメント

カテゴリ

月別アーカイブ

検索フォーム

リンク

QRコード

QR

ページトップへ