FC2ブログ

駒場東邦中学校 算数 問題 解説★2020年(R2年)

2020.04.04 18:13|入試問題分析(算数)
今回は駒場東邦中学を扱います

【入試資料分析】
今回は駒場東邦中学校をとりあげます。

受験者数 576名,合格者数 290名で実質倍率1.99です。
教科ごとの点数は(平均点 合格者平均点 配点)の順に
国語(60.8 66.9 120)
社会(49.6 53.9 80)
算数(74.0 84.0 120)
理科(55.1 59.3 80)
合計(239.5 264.1 400)
難易度が高かったわけではありませんが、算数の平均点はここ数年では少し低めでした。

【問題分析】
大問1…(1)計算問題、必ず正解したい。(2)簡単な図形の転がりの問題、瞬殺したい。(3)(面積)÷(1辺の長さ)で比をとる問題、確実にあわせたい。(4)意外とほとんど場合分けが生じません。大きい方から決めていくとI+Jが10+14しかなくて、E+Fが11+5と9+7で迷いますが11+5とするとA+B=14が作れないので9+7簡単に決まります。正解したい。

大問2…今回はこの問題を扱います。

大問3…(1)(2)簡単な計算で求まります。これはあわせておきたい。(3)計算は面倒ですが難しくはありません。しかし問題の状況を理解するのは難しいです。外のコースほど合計200mにするために前方からスタートしないといけませんが、さぶろう君は3.14×10=31.4m前方となりこれはBCの半分の長さ18.6mを越えてるので曲線部分からのスタートになることが注意です。


大問4…(1)全部同じ面積なので(ア)は一番面積の小さい青になります。正方形の面積は144×4=576=24×24とわかります。(2)(ア)の下にある長方形は見えている縦の長さが24-8=16cmより横の長さは144÷16=9cmなので黄色というようにわかっていきます。(3)青が105.6cm^2、黄が156cm^2なので残りは314.4cm^2なので赤は下で白が一番上とわかります。白は短い方の辺が9.6cmと小数なので,その一つ下も面積が小数の105.6cm^2である青と意外とすぐにわかっていきます。


(問題)R2 駒場東邦中学 大問2
2つの整数A,Bに対して,A÷Bの値を小数で表したときの小数第2020位の数を<A÷B>で表すことにします。例えば,2÷3=0.666…なので,<2÷3>=6です。このとき,次の問いに答えなさい。
(1)<1÷101>,<40÷2020>をそれぞれ求めなさい。

(2)<N÷2020>=3をみたす整数Nを1つ求めなさい。


[解説]
(1)
1÷101=0.00990099…
0,0,9,9の4つが繰り返されます。
2020÷4=505で割り切れるので小数第2020位は4番目の9とわかります。

40÷2020=0.01980198…
0,1,9,8の4つが繰り返されます。
小数第2020位は4番目の8とわかります。
40÷2020=2÷101なので1÷101の2倍になっています。

(2)前の小問がヒントになっていないか?これを常に考えたいところです。

1÷101は0099の繰り返しが続きますが、これを99と考えると一つさえ作ればよので一の位が3になるような倍数を考えて
99×7=693
なので
1÷101×7=140÷2020=0.06930693…
となり4番目がきっちり3になって出来上がっています。

他にも99×17=1683より
1÷101×17=340÷2020=0.16831683…
となりこれも4番目がきっちり3になって出来上がっています。

更に適当に
21÷2020=0.010396039…
も満たしています。

Nの値は140,340,21などなど…

うまく見つけられなくても、ごり押しで見つけてくる力も重要です。
そして前の小問をヒントにすることを意識するようにしましょう(畠田)
スポンサーサイト



テーマ:中学受験
ジャンル:学校・教育

←数理教育研究会へのHPはこちら
※お電話・お問い合わせフォームでのご連絡、お待ちしております。
    

Comment

非公開コメント

| 2020.05 |
- - - - - 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 - - - - - -
ご案内


数理教育研究会のHPはこちら↑
※お電話・お問い合わせフォームでのご連絡、お待ちしております。

プロフィール

エデュパスタッフ

Author:エデュパスタッフ
FC2ブログへようこそ!

最新記事

最新コメント

カテゴリ

月別アーカイブ

検索フォーム

リンク

QRコード

QR

ページトップへ